Fang-Fang Yin

Overview:

Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics

Positions:

Gustavo S. Montana Distinguished Professor of Radiation Oncology

Radiation Oncology
School of Medicine

Professor in Radiation Oncology

Radiation Oncology
School of Medicine

Director of the Medical Physics Graduate Program at Duke Kunshan University

DKU Faculty
Duke Kunshan University

Professor of Medical Physics at Duke Kunshan University

DKU Faculty
Duke Kunshan University

Member of the Duke Cancer Institute

Duke Cancer Institute
School of Medicine

Education:

B.S. 1982

Zhejiang University (China)

M.S. 1987

Bowling Green State University

Ph.D. 1992

The University of Chicago

Certificate In Therapeutic Radiologic Physics, Radiation Physics

American Board of Radiology

Grants:

Motion Management Using 4D-MRI for Liver Cancer in Radiation Therapy

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Digital tomosynthesis: a new paradigm for radiation treatment verification

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Principal Investigator
Start Date
End Date

Robotic SPECT for Biological Imaging Onboard Radiation Therapy Machines

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Accurate, High Resolution 3D Dosimetry

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Collaborator
Start Date
End Date

A Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Publications:

A comparison of two methodologies for radiotherapy treatment plan optimization and QA for clinical trials.

BACKGROUND AND PURPOSE: The efficacy of clinical trials and the outcome of patient treatment are dependent on the quality assurance (QA) of radiation therapy (RT) plans. There are two widely utilized approaches that include plan optimization guidance created based on patient-specific anatomy. This study examined these two techniques for dose-volume histogram predictions, RT plan optimizations, and prospective QA processes, namely the knowledge-based planning (KBP) technique and another first principle (FP) technique. METHODS: This analysis included 60, 44, and 10 RT plans from three Radiation Therapy Oncology Group (RTOG) multi-institutional trials: RTOG 0631 (Spine SRS), RTOG 1308 (NSCLC), and RTOG 0522 (H&N), respectively. Both approaches were compared in terms of dose prediction and plan optimization. The dose predictions were also compared to the original plan submitted to the trials for the QA procedure. RESULTS: For the RTOG 0631 (Spine SRS) and RTOG 0522 (H&N) plans, the dose predictions from both techniques have correlation coefficients of >0.9. The RT plans that were re-optimized based on the predictions from both techniques showed similar quality, with no statistically significant differences in target coverage or organ-at-risk sparing. The predictions of mean lung and heart doses from both methods for RTOG1308 patients, on the other hand, have a discrepancy of up to 14 Gy. CONCLUSIONS: Both methods are valuable tools for optimization guidance of RT plans for Spine SRS and Head and Neck cases, as well as for QA purposes. On the other hand, the findings suggest that KBP may be more feasible in the case of inoperable lung cancer patients who are treated with IMRT plans that have spatially unevenly distributed beam angles.
Authors
Geng, H; Giaddui, T; Cheng, C; Zhong, H; Ryu, S; Liao, Z; Yin, F-F; Gillin, M; Mohan, R; Xiao, Y
MLA Citation
Geng, Huaizhi, et al. “A comparison of two methodologies for radiotherapy treatment plan optimization and QA for clinical trials.J Appl Clin Med Phys, vol. 22, no. 10, Oct. 2021, pp. 329–37. Pubmed, doi:10.1002/acm2.13401.
URI
https://scholars.duke.edu/individual/pub1496685
PMID
34432946
Source
pubmed
Published In
Journal of Applied Clinical Medical Physics
Volume
22
Published Date
Start Page
329
End Page
337
DOI
10.1002/acm2.13401

Radiomics: a primer on high-throughput image phenotyping.

Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology's special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.
Authors
Lafata, KJ; Wang, Y; Konkel, B; Yin, F-F; Bashir, MR
MLA Citation
Lafata, Kyle J., et al. “Radiomics: a primer on high-throughput image phenotyping.Abdom Radiol (Ny), Aug. 2021. Pubmed, doi:10.1007/s00261-021-03254-x.
URI
https://scholars.duke.edu/individual/pub1494970
PMID
34435228
Source
pubmed
Published In
Abdom Radiol (Ny)
Published Date
DOI
10.1007/s00261-021-03254-x

A geometry-guided deep learning technique for CBCT reconstruction.

Purpose.Although deep learning (DL) technique has been successfully used for computed tomography (CT) reconstruction, its implementation on cone-beam CT (CBCT) reconstruction is extremely challenging due to memory limitations. In this study, a novel DL technique is developed to resolve the memory issue, and its feasibility is demonstrated for CBCT reconstruction from sparsely sampled projection data.Methods.The novel geometry-guided deep learning (GDL) technique is composed of a GDL reconstruction module and a post-processing module. The GDL reconstruction module learns and performs projection-to-image domain transformation by replacing the traditional single fully connected layer with an array of small fully connected layers in the network architecture based on the projection geometry. The DL post-processing module further improves image quality after reconstruction. We demonstrated the feasibility and advantage of the model by comparing ground truth CBCT with CBCT images reconstructed using (1) GDL reconstruction module only, (2) GDL reconstruction module with DL post-processing module, (3) Feldkamp, Davis, and Kress (FDK) only, (4) FDK with DL post-processing module, (5) ray-tracing only, and (6) ray-tracing with DL post-processing module. The differences are quantified by peak-signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root-mean-square error (RMSE).Results.CBCT images reconstructed with GDL show improvements in quantitative scores of PSNR, SSIM, and RMSE. Reconstruction time per image for all reconstruction methods are comparable. Compared to current DL methods using large fully connected layers, the estimated memory requirement using GDL is four orders of magnitude less, making DL CBCT reconstruction feasible.Conclusion.With much lower memory requirement compared to other existing networks, the GDL technique is demonstrated to be the first DL technique that can rapidly and accurately reconstruct CBCT images from sparsely sampled data.
Authors
MLA Citation
Lu, Ke, et al. “A geometry-guided deep learning technique for CBCT reconstruction.Phys Med Biol, vol. 66, no. 15, July 2021. Pubmed, doi:10.1088/1361-6560/ac145b.
URI
https://scholars.duke.edu/individual/pub1488943
PMID
34261057
Source
pubmed
Published In
Phys Med Biol
Volume
66
Published Date
DOI
10.1088/1361-6560/ac145b

Intrinsic radiomic expression patterns after 20 Gy demonstrate early metabolic response of oropharyngeal cancers.

PURPOSE: This study investigated the prognostic potential of intra-treatment PET radiomics data in patients undergoing definitive (chemo) radiation therapy for oropharyngeal cancer (OPC) on a prospective clinical trial. We hypothesized that the radiomic expression of OPC tumors after 20 Gy is associated with recurrence-free survival (RFS). MATERIALS AND METHODS: Sixty-four patients undergoing definitive (chemo)radiation for OPC were prospectively enrolled on an IRB-approved study. Investigational 18 F-FDG-PET/CT images were acquired prior to treatment and 2 weeks (20 Gy) into a seven-week course of therapy. Fifty-five quantitative radiomic features were extracted from the primary tumor as potential biomarkers of early metabolic response. An unsupervised data clustering algorithm was used to partition patients into clusters based only on their radiomic expression. Clustering results were naïvely compared to residual disease and/or subsequent recurrence and used to derive Kaplan-Meier estimators of RFS. To test whether radiomic expression provides prognostic value beyond conventional clinical features associated with head and neck cancer, multivariable Cox proportional hazards modeling was used to adjust radiomic clusters for T and N stage, HPV status, and change in tumor volume. RESULTS: While pre-treatment radiomics were not prognostic, intra-treatment radiomic expression was intrinsically associated with both residual/recurrent disease (P = 0.0256, χ 2 test) and RFS (HR = 7.53, 95% CI = 2.54-22.3; P = 0.0201). On univariate Cox analysis, radiomic cluster was associated with RFS (unadjusted HR = 2.70; 95% CI = 1.26-5.76; P = 0.0104) and maintained significance after adjustment for T, N staging, HPV status, and change in tumor volume after 20 Gy (adjusted HR = 2.69; 95% CI = 1.03-7.04; P = 0.0442). The particular radiomic characteristics associated with outcomes suggest that metabolic spatial heterogeneity after 20 Gy portends complete and durable therapeutic response. This finding is independent of baseline metabolic imaging characteristics and clinical features of head and neck cancer, thus providing prognostic advantages over existing approaches. CONCLUSIONS: Our data illustrate the prognostic value of intra-treatment metabolic image interrogation, which may potentially guide adaptive therapy strategies for OPC patients and serve as a blueprint for other disease sites. The quality of our study was strengthened by its prospective image acquisition protocol, homogenous patient cohort, relatively long patient follow-up times, and unsupervised clustering formalism that is less prone to hyper-parameter tuning and over-fitting compared to supervised learning.
Authors
Lafata, KJ; Chang, Y; Wang, C; Mowery, YM; Vergalasova, I; Niedzwiecki, D; Yoo, DS; Liu, J-G; Brizel, DM; Yin, F-F
MLA Citation
Lafata, Kyle J., et al. “Intrinsic radiomic expression patterns after 20 Gy demonstrate early metabolic response of oropharyngeal cancers.Med Phys, vol. 48, no. 7, July 2021, pp. 3767–77. Pubmed, doi:10.1002/mp.14926.
URI
https://scholars.duke.edu/individual/pub1482142
PMID
33959972
Source
pubmed
Published In
Med Phys
Volume
48
Published Date
Start Page
3767
End Page
3777
DOI
10.1002/mp.14926

Radiomics and Outcome Prediction

Authors
MLA Citation
Yin, Fang-Fang. “Radiomics and Outcome Prediction.” Medical Physics, vol. 48, no. 6, 2021.
URI
https://scholars.duke.edu/individual/pub1495085
Source
wos-lite
Published In
Medical Physics
Volume
48
Published Date

Research Areas:

Bioinformatics
Medical physics