Fang-Fang Yin

Overview:

Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics

Positions:

Professor in Radiation Oncology

Radiation Oncology
School of Medicine

Director of the Medical Physics Graduate Program at Duke Kunshan University

DKU Faculty
Duke Kunshan University

Professor of Medical Physics at Duke Kunshan University

DKU Faculty
Duke Kunshan University

Member of the Duke Cancer Institute

Duke Cancer Institute
School of Medicine

Education:

B.S. 1982

Zhejiang University (China)

M.S. 1987

Bowling Green State University

Ph.D. 1992

The University of Chicago

Certificate In Therapeutic Radiologic Physics, Radiation Physics

American Board of Radiology

Grants:

Motion Management Using 4D-MRI for Liver Cancer in Radiation Therapy

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Digital tomosynthesis: a new paradigm for radiation treatment verification

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Principal Investigator
Start Date
End Date

Robotic SPECT for Biological Imaging Onboard Radiation Therapy Machines

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Accurate, High Resolution 3D Dosimetry

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Collaborator
Start Date
End Date

A Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Publications:

Automatic detection of pulmonary nodules on CT images with YOLOv3: development and evaluation using simulated and patient data.

Background: To develop a high-efficiency pulmonary nodule computer-aided detection (CAD) method for localization and diameter estimation. Methods: The developed CAD method centralizes a novel convolutional neural network (CNN) algorithm, You Only Look Once (YOLO) v3, as a deep learning approach. This method is featured by two distinct properties: (I) an automatic multi-scale feature extractor for nodule feature screening, and (II) a feature-based bounding box generator for nodule localization and diameter estimation. Two independent studies were performed to train and evaluate this CAD method. One study comprised of a computer simulation that utilized computer-based ground truth. In this study, 300 CT scans were simulated by Cardiac-torso (XCAT) digital phantom. Spherical nodules of various sizes (i.e., 3-10 mm in diameter) were randomly implanted within the lung region of the simulated images-the second study utilized human-based ground truth in patients. The CAD method was developed by CT scans sourced from the LIDC-IDRI database. CT scans with slice thickness above 2.5 mm were excluded, leaving 888 CT images for analysis. A 10-fold cross-validation procedure was implemented in both studies to evaluate network hyper-parameterization and generalization. The overall accuracy of the CAD method was evaluated by the detection sensitivities, in response to average false positives (FPs) per image. In the patient study, the detection accuracy was further compared against 9 recently published CAD studies using free-receiver response operating characteristic (FROC) curve analysis. Localization and diameter estimation accuracies were quantified by the mean and standard error between the predicted value and ground truth. Results: The average results among the 10 cross-validation folds in both studies demonstrated the CAD method achieved high detection accuracy. The sensitivity was 99.3% (FPs =1), and improved to 100% (FPs =4) in the simulation study. The corresponding sensitivities were 90.0% and 95.4% in the patient study, displaying superiority over several conventional and CNN-based lung nodule CAD methods in the FROC curve analysis. Nodule localization and diameter estimation errors were less than 1 mm in both studies. The developed CAD method achieved high computational efficiency: it yields nodule-specific quantitative values (i.e., number, existence confidence, central coordinates, and diameter) within 0.1 s for 2D CT slice inputs. Conclusions: The reported results suggest that the developed lung pulmonary nodule CAD method possesses high accuracies of nodule localization and diameter estimation. The high computational efficiency enables its potential clinical application in the future.
Authors
MLA Citation
Liu, Chenyang, et al. “Automatic detection of pulmonary nodules on CT images with YOLOv3: development and evaluation using simulated and patient data.Quant Imaging Med Surg, vol. 10, no. 10, Oct. 2020, pp. 1917–29. Pubmed, doi:10.21037/qims-19-883.
URI
https://scholars.duke.edu/individual/pub1461029
PMID
33014725
Source
pubmed
Published In
Quantitative Imaging in Medicine and Surgery
Volume
10
Published Date
Start Page
1917
End Page
1929
DOI
10.21037/qims-19-883

Adaptive respiratory signal prediction using dual multi-layer perceptron neural networks.

PURPOSE: To improve the prediction accuracy of respiratory signals by adapting the multi-layer perceptron neural network (MLP-NN) model to changing respiratory signals. We have previously developed an MLP-NN to predict respiratory signals obtained from a real-time position management (RPM) device. Preliminary testing results indicated that poor prediction accuracy may be observed after several seconds for irregular breathing patterns as only a set of fixed data was used in one-time training. To improve the prediction accuracy, we introduced a continuous learning technique using the updated training data to replace one-time learning using the fixed training data. We carried on this new prediction using an adaptation approach with dual MLP-NNs rather than single MLP-NN. When one MLP-NN was performing prediction of the respiratory signals, another one was being trained using the updated data and vice versa. The predicted performance was evaluated by root-mean-square-error (RMSE) between the predicted and true signals from 202 patients' respiratory patterns each with 1 min recording length. The effects of adding an additional network, training parameter, and respiratory signal irregularity on the performance of the new predictor were investigated based on four different network configurations: a single MLP-NN, high-computation dual MLP-NNs (U1), two different combinations of high- and low-computation dual MLP-NNs (U2 and U3). The RMSEs using U1 method were reduced by 34%, 19%, and 10% compared to those using MLP-NN, U2 and U3 methods, respectively. Continuous training of an MLP-NN based on a dual-network configuration using updated respiratory signals improved prediction accuracy compared to one-time training of an MLP-NN using fixed signals.
Authors
Sun, W; Wei, Q; Ren, L; Dang, J; Yin, F-F
MLA Citation
Sun, Wenzheng, et al. “Adaptive respiratory signal prediction using dual multi-layer perceptron neural networks.Phys Med Biol, vol. 65, no. 18, Sept. 2020, p. 185005. Pubmed, doi:10.1088/1361-6560/abb170.
URI
https://scholars.duke.edu/individual/pub1461003
PMID
32924976
Source
pubmed
Published In
Phys Med Biol
Volume
65
Published Date
Start Page
185005
DOI
10.1088/1361-6560/abb170

An Interpretable Planning Bot for Pancreas Stereotactic Body Radiation Therapy.

PURPOSE: Pancreas stereotactic body radiation therapy (SBRT) treatment planning requires planners to make sequential, time-consuming interactions with the treatment planning system to reach the optimal dose distribution. We sought to develop a reinforcement learning (RL)-based planning bot to systematically address complex tradeoffs and achieve high plan quality consistently and efficiently. METHODS AND MATERIALS: The focus of pancreas SBRT planning is finding a balance between organ-at-risk sparing and planning target volume (PTV) coverage. Planners evaluate dose distributions and make planning adjustments to optimize PTV coverage while adhering to organ-at-risk dose constraints. We formulated such interactions between the planner and treatment planning system into a finite-horizon RL model. First, planning status features were evaluated based on human planners' experience and defined as planning states. Second, planning actions were defined to represent steps that planners would commonly implement to address different planning needs. Finally, we derived a reward system based on an objective function guided by physician-assigned constraints. The planning bot trained itself with 48 plans augmented from 16 previously treated patients, and generated plans for 24 cases in a separate validation set. RESULTS: All 24 bot-generated plans achieved similar PTV coverages compared with clinical plans while satisfying all clinical planning constraints. Moreover, the knowledge learned by the bot could be visualized and interpreted as consistent with human planning knowledge, and the knowledge maps learned in separate training sessions were consistent, indicating reproducibility of the learning process. CONCLUSIONS: We developed a planning bot that generates high-quality treatment plans for pancreas SBRT. We demonstrated that the training phase of the bot is tractable and reproducible, and the knowledge acquired is interpretable. As a result, the RL planning bot can potentially be incorporated into the clinical workflow and reduce planning inefficiencies.
Authors
MLA Citation
Zhang, Jiahan, et al. “An Interpretable Planning Bot for Pancreas Stereotactic Body Radiation Therapy.Int J Radiat Oncol Biol Phys, vol. 109, no. 4, Mar. 2021, pp. 1076–85. Pubmed, doi:10.1016/j.ijrobp.2020.10.019.
URI
https://scholars.duke.edu/individual/pub1464387
PMID
33115686
Source
pubmed
Published In
Int J Radiat Oncol Biol Phys
Volume
109
Published Date
Start Page
1076
End Page
1085
DOI
10.1016/j.ijrobp.2020.10.019

Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast Radiation Therapy.

Purpose: The machine learning-based automated treatment planning (MLAP) tool has been developed and evaluated for breast radiation therapy planning at our institution. We implemented MLAP for patient treatment and assessed our clinical experience for its performance. Methods and Materials: A total of 102 patients of breast or chest wall treatment plans were prospectively evaluated with institutional review board approval. A human planner executed MLAP to create an auto-plan via automation of fluence maps generation. If judged necessary, a planner further fine-tuned the fluence maps to reach a final plan. Planners recorded the time required for auto-planning and manual modification. Target (ie, breast or chest wall and nodes) coverage and dose homogeneity were compared between the auto-plan and final plan. Results: Cases without nodes (n = 71) showed negligible (<1%) differences for target coverage and dose homogeneity between the auto-plan and final plan. Cases with nodes (n = 31) also showed negligible difference for target coverage. However, mean ± standard deviation of volume receiving 105% of the prescribed dose and maximum dose were reduced from 43.0% ± 26.3% to 39.4% ± 23.7% and 119.7% ± 9.5% to 114.4% ± 8.8% from auto-plan to final plan, respectively, all with P ≤ .01 for cases with nodes (n = 31). Mean ± standard deviation time spent for auto-plans and additional fluence modification for final plans were 12.1 ± 9.3 and 13.1 ± 12.9 minutes, respectively, for cases without nodes, and 16.4 ± 9.7 and 26.4 ± 16.4 minutes, respectively, for cases with nodes. Conclusions: The MLAP tool has been successfully implemented for routine clinical practice and has significantly improved planning efficiency. Clinical experience indicates that auto-plans are sufficient for target coverage, but improvement is warranted to reduce high dose volume for cases with nodal irradiation. This study demonstrates the clinical implementation of auto-planning for patient treatment and the significant importance of integrating human experience and feedback to improve MLAP for better clinical translation.
Authors
Yoo, S; Sheng, Y; Blitzblau, R; McDuff, S; Champ, C; Morrison, J; O'Neill, L; Catalano, S; Yin, F-F; Wu, QJ
MLA Citation
Yoo, Sua, et al. “Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast Radiation Therapy.Adv Radiat Oncol, vol. 6, no. 2, Mar. 2021, p. 100656. Pubmed, doi:10.1016/j.adro.2021.100656.
URI
https://scholars.duke.edu/individual/pub1476592
PMID
33748540
Source
pubmed
Published In
Advances in Radiation Oncology
Volume
6
Published Date
Start Page
100656
DOI
10.1016/j.adro.2021.100656

An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).

PURPOSE: To develop an artificial intelligence (AI) agent for fully automated rapid head-and-neck intensity-modulated radiation therapy (IMRT) plan generation without time-consuming dose-volume-based inverse planning. METHODS: This AI agent was trained via implementing a conditional generative adversarial network (cGAN) architecture. The generator, PyraNet, is a novel deep learning network that implements 28 classic ResNet blocks in pyramid-like concatenations. The discriminator is a customized four-layer DenseNet. The AI agent first generates multiple customized two-dimensional projections at nine template beam angles from a patient's three-dimensional computed tomography (CT) volume and structures. These projections are then stacked as four-dimensional inputs of PyraNet, from which nine radiation fluence maps of the corresponding template beam angles are generated simultaneously. Finally, the predicted fluence maps are automatically postprocessed by Gaussian deconvolution operations and imported into a commercial treatment planning system (TPS) for plan integrity check and visualization. The AI agent was built and tested upon 231 oropharyngeal IMRT plans from a TPS plan library. 200/16/15 plans were assigned for training/validation/testing, respectively. Only the primary plans in the sequential boost regime were studied. All plans were normalized to 44 Gy prescription (2 Gy/fx). A customized Harr wavelet loss was adopted for fluence map comparison during the training of the PyraNet. For test cases, isodose distributions in AI plans and TPS plans were qualitatively evaluated for overall dose distributions. Key dosimetric metrics were compared by Wilcoxon signed-rank tests with a significance level of 0.05. RESULTS: All 15 AI plans were successfully generated. Isodose gradients outside of PTV in AI plans were comparable to those of the TPS plans. After PTV coverage normalization, Dmean of left parotid (DAI  = 23.1 ± 2.4 Gy; DTPS  = 23.1 ± 2.0 Gy), right parotid (DAI  = 23.8 ± 3.0 Gy; DTPS  = 23.9 ± 2.3 Gy), and oral cavity (DAI  = 24.7 ± 6.0 Gy; DTPS  = 23.9 ± 4.3 Gy) in the AI plans and the TPS plans were comparable without statistical significance. AI plans achieved comparable results for maximum dose at 0.01cc of brainstem (DAI  = 15.0 ± 2.1 Gy; DTPS  = 15.5 ± 2.7 Gy) and cord + 5mm (DAI  = 27.5 ± 2.3 Gy; DTPS  = 25.8 ± 1.9 Gy) without clinically relevant differences, but body Dmax results (DAI  = 121.1 ± 3.9 Gy; DTPS  = 109.0 ± 0.9 Gy) were higher than the TPS plan results. The AI agent needed ~3 s for predicting fluence maps of an IMRT plan. CONCLUSIONS: With rapid and fully automated execution, the developed AI agent can generate complex head-and-neck IMRT plans with acceptable dosimetry quality. This approach holds great potential for clinical applications in preplanning decision-making and real-time planning.
Authors
Li, X; Wang, C; Sheng, Y; Zhang, J; Wang, W; Yin, F-F; Wu, Q; Wu, QJ; Ge, Y
URI
https://scholars.duke.edu/individual/pub1474690
PMID
33577108
Source
pubmed
Published In
Med Phys
Published Date
DOI
10.1002/mp.14770

Research Areas:

Bioinformatics
Medical physics