Jen-Tsan Chi

Overview:

We are using functional genomic approaches to investigate the nutrient signaling and stress adaptations of cancer cells when exposed to various nutrient deprivations and microenvironmental stress conditions. Recently, we focus on two areas. First, we are elucidating the genetic determinants and disease relevance of ferroptosis, a newly recognized form of cell death. Second, we have identified the mammalian stringent response pathway which is highly similar to bacterial stringent response, but with some very interesting twists and novel mechanisms.

A. The genetic determinants and disease relevance of ferroptosis

Ferroptosis is a newly recognized form of cell death that is characterized by iron dependency and lipid peroxidation. The importance of ferroptosis is being recognized in many human diseases, including cancers, ischemia injuries, and neurodegeneration. Previously, we have identified the profound cystine addiction of renal cell carcinoma (1), breast cancer cells (2, 3), and ovarian cancer cells (4). Based on the concept that cystine deprivation triggers the ferroptosis due to the unopposed oxidative stresses, we have performed functional genomic screens to identify many novel genetic determinants of ferroptosis. For example, we have found that DNA damage response and ATM kinase regulate ferroptosis via affecting iron metabolism (5). This finding supports the potential of ionizing radiation to trigger DNA damage response and synergize with ferroptosis to treat human cancers. In addition, we found that ferroptosis is highly regulated by cell density. When cells are grown at low density, they are highly susceptible to ferroptosis. In contrast, the same cells become resistant to ferroptosis when grown at high density and confluency. we have found the Hippo pathway effectors TAZ and YAP are responsible for the cell density-dependent ferroptosis (4, 6, 7). Right now, we are pursuing several other novel determinants of ferroptosis that will reveal surprising insights into this new form of cell death.

B. A new stress pathway – mammalian stress response

All living organisms encounter a wide variety of nutrient deprivations and environmental stresses. Therefore, all organisms have developed various mechanisms to respond and promote survival under stress. In bacteria, the main strategy is “stringent response” triggered by the accumulation of the alarmone (p)ppGpp (shortened to ppGpp below) via regulation of its synthetase RelA and its hydrolase SpoT (8). The ppGpp binds to the transcription factor DksA and RNA polymerase to orchestrate extensive transcriptional changes that repress proliferation and promote stress survival (8, 9). While highly conserved among bacteria, the stringent response had not been reported in metazoans. However, a recent study identified Drosophila and human MESH1 (Metazoan SpoT Homolog 1) as the homologs of the ppGpp hydrolase domain of the bacterial SpoT (10). Both MESH1 proteins exhibit ppGpp hydrolase activity, and the deletion of Mesh1 in Drosophila led to a transcriptional response reminiscent of the bacterial stringent response (10). Recently, we have found that the genetic removal of MESH1 in tumor cells triggers extensive transcriptional changes and confers protection against oxidative stress-induced ferroptosis (11). Importantly, MESH1 removal also triggers proliferative arrest and other robust anti-tumor effects. Therefore, MESH1 knockdown leads to both stress survival and proliferation arrest, two cardinal features highly reminiscent of the bacterial stringent response. Therefore, we termed this pathway as “mammalian stringent response” (12). We have found that NADPH is the relevant MESH1 in the contexts of ferroptosis (13). Now, we are investigating how MESH1 removal leads to proliferation of arrests and anti-tumor phenotypes. Furthermore, we have found several other substrates of MESH1. We are investigating their function using culture cells, MESH1 KO mice, and other model organisms.

 

C. Genomic and single cell RNA analysis of Red Blood Cells

Red blood cells (RBC) are responsible for oxygen delivery to muscles during vigorous exercise. Therefore, many doping efforts focus on increasing RBC number and function to boost athletic performance during competition. For many decades, RBC were thought to be merely identical “sacs of hemoglobin” with no discernable differences due to factors such as age or pre-transfusion storage time. Additionally, because RBC lose their nuclei during terminal differentiation, they were not believed to retain any genetic materials.  These long-held beliefs have now been disproven and the results have significant implications for detecting autologous blood transfusion (ABT) doping in athletes.  We were among the first to discover that RBCs contain abundant and diverse species of RNAs. Using this knowledge, we subsequently optimized protocols and performed genomic analysis of the RBC transcriptome in sickle cell disease; these results revealed that heterogeneous RBCs could be divided into several subpopulations, which had implications for the mechanisms of malaria resistance. As an extension of these studies, we used high resolution Illumina RNA-Seq approaches to identify hundreds of additional known and novel microRNAs, mRNAs, and other RNA species in RBCs. This dynamic RBC transcriptome represents a significant opportunity to assess the impact that environmental factors (such as pre-transfusion refrigerate storage) on the RBC transcriptome. We have now identified a >10-fold change in miR-720 as well as several other RNA transcripts whose levels are significantly altered by RBC storage (14) which gained significant press coverage. We are pursuing the genomic and single cell analysis of RNA transcriptome in the context of blood doping, sickle cell diseases and other red cell diseases.

 

 

 

 

1.         Tang X, Wu J, Ding CK, Lu M, Keenan MM, Lin CC, et al. Cystine Deprivation Triggers Programmed Necrosis in VHL-Deficient Renal Cell Carcinomas. Cancer Res. 2016;76(7):1892-903.

2.         Tang X, Ding CK, Wu J, Sjol J, Wardell S, Spasojevic I, et al. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene. 2017;36(30):4379.

3.         Lin CC, Mabe NW, Lin YT, Yang WH, Tang X, Hong L, et al. RIPK3 upregulation confers robust proliferation and collateral cystine-dependence on breast cancer recurrence. Cell Death Differ. 2020.

4.         Yang WH, Huang Z, Wu J, Ding C-KC, Murphy SK, Chi J-T. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Molecular Cancer Research. 2019: molcanres.0691.2019.

5.         Chen PH, Wu J, Ding CC, Lin CC, Pan S, Bossa N, et al. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 2019.

6.         Yang W-H, Chi J-T. Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis. Molecular & Cellular Oncology. 2019:1699375.

7.         Yang WH, Ding CKC, Sun T, Hsu DS, Chi JT. The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma Cell Reports. 2019;28(10):2501-8.e4.

8.         Potrykus K, Cashel M. (p)ppGpp: still magical? Annu Rev Microbiol. 2008;62:35-51.

9.         Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, et al. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell. 2012;48(2):231-41.

10.       Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, et al. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol. 2010;17(10):1188-94.

11.       Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-72.

12.       Ding C-KC, Rose J, Wu J, Sun T, Chen K-Y, Chen P-H, et al. Mammalian stringent-like response mediated by the cytosolic NADPH phosphatase MESH1. bioRxiv. 2018.

13.       Ding C-KC, Rose J, Sun T, Wu J, Chen P-H, Lin C-C, et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nature Metabolism. 2020.

14.       Yang WH, Doss JF, Walzer KA, McNulty SM, Wu J, Roback JD, et al. Angiogenin-mediated tRNA cleavage as a novel feature of stored red blood cells. Br J Haematol. 2018.

 

 

Positions:

Associate Professor in Molecular Genetics and Microbiology

Molecular Genetics and Microbiology
School of Medicine

Assistant Professor of Medicine

Medicine, Rheumatology and Immunology
School of Medicine

Assistant Professor in Radiation Oncology

Radiation Oncology
School of Medicine

Associate Professor of Pharmacology and Cancer Biology

Pharmacology & Cancer Biology
School of Medicine

Member of the Duke Cancer Institute

Duke Cancer Institute
School of Medicine

Education:

M.D. 1991

National Taiwan University (Taiwan)

Ph.D. 2000

Stanford University

Postdoctoral Research, Biochemistry

Stanford University

Grants:

Metabolic regulation of KLHL proteins through O-glycosylation

Administered By
Molecular Genetics and Microbiology
Awarded By
National Institutes of Health
Role
Principal Investigator
Start Date
End Date

Storage-specific erythrocyte gene signatures to detect autologous transfusion

Administered By
Molecular Genetics and Microbiology
Awarded By
Partnership for Clean Competition
Role
Principal Investigator
Start Date
End Date

Detect autologous transfusion by novel separation and characterization of RBC storage exosomes

Administered By
Molecular Genetics and Microbiology
Awarded By
Partnership for Clean Competition
Role
Principal Investigator
Start Date
End Date

Small RNA transcriptome as novel approaches to detect autologous blood transfusion

Administered By
Molecular Genetics and Microbiology
Awarded By
World Anti-Doping Agency
Role
Principal Investigator
Start Date
End Date

Comparison of oxidant damage, Nrf2 characteristics, and gene modification of cord blood versus plerixafor-mobilized adult CD34+ cells from sickle cell disease patients

Administered By
Molecular Genetics and Microbiology
Awarded By
New York Blood Center
Role
Principal Investigator
Start Date
End Date

Publications:

Serum metabolomic analysis of men on a low-carbohydrate diet for biochemically recurrent prostate cancer reveals the potential role of ketogenesis to slow tumor growth: a secondary analysis of the CAPS2 diet trial.

BACKGROUND: Systemic treatments for prostate cancer (PC) have significant side effects. Thus, newer alternatives with fewer side effects are urgently needed. Animal and human studies suggest the therapeutic potential of low carbohydrate diet (LCD) for PC. To test this possibility, Carbohydrate and Prostate Study 2 (CAPS2) trial was conducted in PC patients with biochemical recurrence (BCR) after local treatment to determine the effect of a 6-month LCD intervention vs. usual care control on PC growth as measured by PSA doubling time (PSADT). We previously reported the LCD intervention led to significant weight loss, higher HDL, and lower triglycerides and HbA1c with a suggested longer PSADT. However, the metabolic basis of these effects are unknown. METHODS: To identify the potential metabolic basis of effects of LCD on PSADT, serum metabolomic analysis was performed using baseline, month 3, and month 6 banked sera to identify the metabolites significantly altered by LCD and that correlated with varying PSADT. RESULTS: LCD increased the serum levels of ketone bodies, glycine and hydroxyisocaproic acid. Reciprocally, LCD reduced the serum levels of alanine, cytidine, asymmetric dimethylarginine (ADMA) and 2-oxobutanoate. As high ADMA level is shown to inhibit nitric oxide (NO) signaling and contribute to various cardiovascular diseases, the ADMA repression under LCD may contribute to the LCD-associated health benefit. Regression analysis of the PSADT revealed a correlation between longer PSADT with higher level of 2-hydroxybutyric acids, ketone bodies, citrate and malate. Longer PSADT was also associated with LCD reduced nicotinamide, fructose-1, 6-biphosphate (FBP) and 2-oxobutanoate. CONCLUSION: These results suggest a potential association of ketogenesis and TCA metabolites with slower PC growth and conversely glycolysis with faster PC growth. The link of high ketone bodies with longer PSADT supports future studies of ketogenic diets to slow PC growth.
Authors
Chi, J-T; Lin, P-H; Tolstikov, V; Howard, L; Chen, EY; Bussberg, V; Greenwood, B; Narain, NR; Kiebish, MA; Freedland, SJ
URI
https://scholars.duke.edu/individual/pub1513895
PMID
35338353
Source
pubmed
Published In
Prostate Cancer Prostatic Dis
Published Date
DOI
10.1038/s41391-022-00525-6

MESH1 knockdown triggers proliferation arrest through TAZ repression.

All organisms are constantly exposed to various stresses, necessitating adaptive strategies for survival. In bacteria, the main stress-coping mechanism is the stringent response triggered by the accumulation of "alarmone" (p)ppGpp to arrest proliferation and reprogram transcriptome. While mammalian genomes encode MESH1-the homolog of the (p)ppGpp hydrolase SpoT, current knowledge about its function remains limited. We found MESH1 expression tended to be higher in tumors and associated with poor patient outcomes. Consistently, MESH1 knockdown robustly inhibited proliferation, depleted dNTPs, reduced tumor sphere formation, and retarded xenograft growth. These antitumor phenotypes associated with MESH1 knockdown were accompanied by a significantly altered transcriptome, including the repressed expression of TAZ, a HIPPO coactivator, and proliferative gene. Importantly, TAZ restoration mitigated many anti-growth phenotypes of MESH1 knockdown, including proliferation arrest, reduced sphere formation, tumor growth inhibition, dNTP depletion, and transcriptional changes. Furthermore, TAZ repression was associated with the histone hypo-acetylation at TAZ regulatory loci due to the induction of epigenetic repressors HDAC5 and AHRR. Together, MESH1 knockdown in human cells altered the genome-wide transcriptional patterns and arrested proliferation that mimicked the bacterial stringent response through the epigenetic repression of TAZ expression.
Authors
Sun, T; Ding, C-KC; Zhang, Y; Zhang, Y; Lin, C-C; Wu, J; Setayeshpour, Y; Coggins, S; Shepard, C; Macias, E; Kim, B; Zhou, P; Gordân, R; Chi, J-T
MLA Citation
Sun, Tianai, et al. “MESH1 knockdown triggers proliferation arrest through TAZ repression.Cell Death Dis, vol. 13, no. 3, Mar. 2022, p. 221. Pubmed, doi:10.1038/s41419-022-04663-6.
URI
https://scholars.duke.edu/individual/pub1512788
PMID
35273140
Source
pubmed
Published In
Cell Death & Disease
Volume
13
Published Date
Start Page
221
DOI
10.1038/s41419-022-04663-6

Serum metabolomic analysis of men on a low-carbohydrate diet for biochemically recurrent prostate cancer reveal the potential role of ketogenesis to slow tumor growth: A secondary analysis of the CAPS2 diet trial

<h4>Background</h4> Systemic treatments for prostate cancer (PC) have significant side effects. Thus, newer alternatives with fewer side effects are urgently needed. Animal and human studies suggest the therapeutic potential of low carbohydrate diet (LCD) for PC. To test this possibility, Carbohydrate and Prostate Study 2 (CAPS2) trial was conducted in PC patients with biochemical recurrence (BCR) after local treatment to determine the effect of a 6-month LCD intervention vs. usual care control on PC growth as measured by PSA doubling time (PSADT). We previously reported the LCD intervention led to significant weight loss, higher HDL, and lower triglycerides and HbA1c with a suggested longer PSADT. However, the metabolic basis of these effects are unknown. <h4>Methods</h4> To identify the potential metabolic basis of effects of LCD on PSADT, serum metabolomic analysis was performed using baseline, month 3, and month 6 banked sera to identify the metabolites significantly altered by LCD and that correlated with varying PSADT. <h4>Results</h4> LCD increased the serum levels of ketone bodies, glycine and hydroxyisocaproic acid. Reciprocally, LCD reduced the serum levels of alanine, cytidine, asymmetric dimethylarginine (ADMA) and 2-oxobutanoate. As high ADMA level is shown to inhibit nitric oxide (NO) signaling and contribute to various cardiovascular diseases, the ADMA repression under LCD may contribute to the LCD-associated health benefit. Regression analysis of the PSADT revealed a correlation between longer PSADT with higher level of 2-hydroxybutyric acids, ketone bodies, citrate and malate. Longer PSADT was also associated with LCD reduced nicotinamide, fructose-1, 6-biphosphate (FBP) and 2-oxobutanoate. <h4>Conclusion</h4> These results suggest a potential association of ketogenesis and TCA metabolites with slower PC growth and conversely glycolysis with faster PC growth. The link of high ketone bodies with longer PSADT supports future studies of ketogenic diets to slow PC growth.
Authors
Chi, J-T; Lin, P-H; Tolstikov, V; Howard, L; Chen, E; Bussberg, V; Greenwood, B; Narain, N; Kiebish, M; Freedland, S
URI
https://scholars.duke.edu/individual/pub1505276
Source
epmc
Published Date
DOI
10.1101/2021.12.29.474437

Single Cell RNA-Seq Analysis of Human Red Cells.

Human red blood cells (RBCs), or erythrocytes, are the most abundant blood cells responsible for gas exchange. RBC diseases affect hundreds of millions of people and impose enormous financial and personal burdens. One well-recognized, but poorly understood feature of RBC populations within the same individual are their phenotypic heterogeneity. The granular characterization of phenotypic RBC variation in normative and disease states may allow us to identify the genetic determinants of red cell diseases and reveal novel therapeutic approaches for their treatment. Previously, we discovered diverse RNA transcripts in RBCs that has allowed us to dissect the phenotypic heterogeneity and malaria resistance of sickle red cells. However, these analyses failed to capture the heterogeneity found in RBC sub-populations. To overcome this limitation, we have performed single cell RNA-Seq to analyze the transcriptional heterogeneity of RBCs from three adult healthy donors which have been stored in the blood bank conditions and assayed at day 1 and day 15. The expression pattern clearly separated RBCs into seven distinct clusters that include one RBC cluster that expresses HBG2 and a small population of RBCs that express fetal hemoglobin (HbF) that we annotated as F cells. Almost all HBG2-expessing cells also express HBB, suggesting bi-allelic expression in single RBC from the HBG2/HBB loci, and we annotated another cluster as reticulocytes based on canonical gene expression. Additional RBC clusters were also annotated based on the enriched expression of NIX, ACVR2B and HEMGN, previously shown to be involved in erythropoiesis. Finally, we found the storage of RBC was associated with an increase in the ACVR2B and F-cell clusters. Collectively, these data indicate the power of single RBC RNA-Seq to capture and discover known and unexpected heterogeneity of RBC population.
Authors
Jain, V; Yang, W-H; Wu, J; Roback, JD; Gregory, SG; Chi, J-T
MLA Citation
Jain, Vaibhav, et al. “Single Cell RNA-Seq Analysis of Human Red Cells.Front Physiol, vol. 13, 2022, p. 828700. Pubmed, doi:10.3389/fphys.2022.828700.
URI
https://scholars.duke.edu/individual/pub1518969
PMID
35514346
Source
pubmed
Published In
Frontiers in Physiology
Volume
13
Published Date
Start Page
828700
DOI
10.3389/fphys.2022.828700

Editorial: Novel Insights Into Ferroptosis.

Authors
Setayeshpour, Y; Chi, J-T
MLA Citation
Setayeshpour, Yasaman, and Jen-Tsan Chi. “Editorial: Novel Insights Into Ferroptosis.Front Cell Dev Biol, vol. 9, 2021, p. 754160. Pubmed, doi:10.3389/fcell.2021.754160.
URI
https://scholars.duke.edu/individual/pub1500664
PMID
34692708
Source
pubmed
Published In
Frontiers in Cell and Developmental Biology
Volume
9
Published Date
Start Page
754160
DOI
10.3389/fcell.2021.754160

Research Areas:

Muser Mentor