Jung Wook Park

Positions:

Rollie Assistant Professorship of Correlative Pathology

Pathology
School of Medicine

Assistant Professor Track V in Pathology

Pathology
School of Medicine

Member of the Duke Cancer Institute

Duke Cancer Institute
School of Medicine

Education:

Ph.D. 2013

University of Wisconsin at Madison

Grants:

Unveiling the roles of neuroendocrine cells in prostate cancer development

Administered By
Pathology
Role
Co-Principal Investigator
Start Date
End Date

Defining the Essential Determinants of Prostate Cancer Differentiation States

Administered By
Pathology
Awarded By
National Institutes of Health
Role
Principal Investigator
Start Date
End Date

Publications:

High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7's induction of DNA damage response, an activity mediated by E7's inactivation of pocket proteins.

Fanconi anemia (FA) is a rare genetic disorder caused by defects in a DNA damage repair system, the FA pathway. FA patients frequently develop squamous cell carcinoma (SCC) at sites that are associated with human papillomavirus (HPV)-driven cancer including the female reproductive tract. To assess experimentally whether FA deficiency increases susceptibility to HPV-associated cervical/vaginal cancer, we monitored cancer incidence in the female lower reproductive tract of FA-deficient mice expressing HPV16 oncogenes, E6 and/or E7. FA deficiency specifically increased the incidence of cancers in mice expressing E7; but this effect was not observed in mice just expressing E6. We also observed that E7, but not E6, induced DNA damage as scored by induction of γ-H2AX and 53BP1 (p53 binding protein 1) nuclear foci, and this induction was heightened in FA-deficient tissue. Finally, we discovered that this induction of DNA damage responses was recapitulated in mice deficient in expression of 'pocket' proteins, pRb, p107 and p130, which are established targets of E7. Our findings support the hypothesis that E7 induces cancer by causing DNA damage at least in part through the inactivation of pocket proteins. This hypothesis explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer.
Authors
Park, JW; Shin, M-K; Lambert, PF
URI
https://scholars.duke.edu/individual/pub1437957
PMID
24013229
Source
pubmed
Published In
Oncogene
Volume
33
Published Date
Start Page
3383
End Page
3391
DOI
10.1038/onc.2013.327

A genetically defined disease model reveals that urothelial cells can initiate divergent bladder cancer phenotypes.

Small cell carcinoma of the bladder (SCCB) is a rare and lethal phenotype of bladder cancer. The pathogenesis and molecular features are unknown. Here, we established a genetically engineered SCCB model and a cohort of patient SCCB and urothelial carcinoma samples to characterize molecular similarities and differences between bladder cancer phenotypes. We demonstrate that SCCB shares a urothelial origin with other bladder cancer phenotypes by showing that urothelial cells driven by a set of defined oncogenic factors give rise to a mixture of tumor phenotypes, including small cell carcinoma, urothelial carcinoma, and squamous cell carcinoma. Tumor-derived single-cell clones also give rise to both SCCB and urothelial carcinoma in xenografts. Despite this shared urothelial origin, clinical SCCB samples have a distinct transcriptional profile and a unique transcriptional regulatory network. Using the transcriptional profile from our cohort, we identified cell surface proteins (CSPs) associated with the SCCB phenotype. We found that the majority of SCCB samples have PD-L1 expression in both tumor cells and tumor-infiltrating lymphocytes, suggesting that immune checkpoint inhibitors could be a treatment option for SCCB. We further demonstrate that our genetically engineered tumor model is a representative tool for investigating CSPs in SCCB by showing that it shares a similar a CSP profile with clinical samples and expresses SCCB-up-regulated CSPs at both the mRNA and protein levels. Our findings reveal distinct molecular features of SCCB and provide a transcriptional dataset and a preclinical model for further investigating SCCB biology.
Authors
Wang, L; Smith, BA; Balanis, NG; Tsai, BL; Nguyen, K; Cheng, MW; Obusan, MB; Esedebe, FN; Patel, SJ; Zhang, H; Clark, PM; Sisk, AE; Said, JW; Huang, J; Graeber, TG; Witte, ON; Chin, AI; Park, JW
MLA Citation
Wang, Liang, et al. “A genetically defined disease model reveals that urothelial cells can initiate divergent bladder cancer phenotypes.Proc Natl Acad Sci U S A, vol. 117, no. 1, Jan. 2020, pp. 563–72. Pubmed, doi:10.1073/pnas.1915770117.
URI
https://scholars.duke.edu/individual/pub1424500
PMID
31871155
Source
pubmed
Published In
Proc Natl Acad Sci U S A
Volume
117
Published Date
Start Page
563
End Page
572
DOI
10.1073/pnas.1915770117

Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer.

Hormonal therapy targeting androgen receptor (AR) is initially effective to treat prostate cancer (PCa), but it eventually fails. It has been hypothesized that cellular heterogeneity of PCa, consisting of AR+ luminal tumor cells and AR- neuroendocrine (NE) tumor cells, may contribute to therapy failure. Here, we describe the successful purification of NE cells from primary fresh human prostate adenocarcinoma based on the cell surface receptor C-X-C motif chemokine receptor 2 (CXCR2). Functional studies revealed CXCR2 to be a driver of the NE phenotype, including loss of AR expression, lineage plasticity, and resistance to hormonal therapy. CXCR2-driven NE cells were critical for the tumor microenvironment by providing a survival niche for the AR+ luminal cells. We demonstrate that the combination of CXCR2 inhibition and AR targeting is an effective treatment strategy in mouse xenograft models. Such a strategy has the potential to overcome therapy resistance caused by tumor cell heterogeneity.
Authors
Li, Y; He, Y; Butler, W; Xu, L; Chang, Y; Lei, K; Zhang, H; Zhou, Y; Gao, AC; Zhang, Q; Taylor, DG; Cheng, D; Farber-Katz, S; Karam, R; Landrith, T; Li, B; Wu, S; Hsuan, V; Yang, Q; Hu, H; Chen, X; Flowers, M; McCall, SJ; Lee, JK; Smith, BA; Park, JW; Goldstein, AS; Witte, ON; Wang, Q; Rettig, MB; Armstrong, AJ; Cheng, Q; Huang, J
MLA Citation
Li, Yanjing, et al. “Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer.Sci Transl Med, vol. 11, no. 521, Dec. 2019. Pubmed, doi:10.1126/scitranslmed.aax0428.
URI
https://scholars.duke.edu/individual/pub1423084
PMID
31801883
Source
pubmed
Published In
Sci Transl Med
Volume
11
Published Date
DOI
10.1126/scitranslmed.aax0428

Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage.

BACKGROUND AND PURPOSE: Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV-) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV- HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. MATERIAL AND METHODS: Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. RESULTS: HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. CONCLUSIONS: Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV- HNC.
Authors
Park, JW; Nickel, KP; Torres, AD; Lee, D; Lambert, PF; Kimple, RJ
MLA Citation
Park, Jung Wook, et al. “Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage.Radiother Oncol, vol. 113, no. 3, Dec. 2014, pp. 337–44. Pubmed, doi:10.1016/j.radonc.2014.08.026.
URI
https://scholars.duke.edu/individual/pub1414265
PMID
25216575
Source
pubmed
Published In
Radiother Oncol
Volume
113
Published Date
Start Page
337
End Page
344
DOI
10.1016/j.radonc.2014.08.026

Requirement of estrogen receptor alpha DNA-binding domain for HPV oncogene-induced cervical carcinogenesis in mice.

Cervical cancer is caused by human papillomavirus (HPV) in collaboration with other non-viral factors. The uterine cervix is hormone responsive and female hormones have been implicated in the pathogenesis of the disease. HPV transgenic mice expressing HPV16 oncogenes E6 (K14E6) and/or E7 (K14E7) have been employed to study a mechanism of estrogen and estrogen receptor α (ERα) in cervical carcinogenesis. A chronic exposure to physiological levels of exogenous estrogen leads to cervical cancer in the HPV transgenic mice, which depends on ERα. The receptor is composed of multiple functional domains including a DNA-binding domain (DBD), which mediates its binding to estrogen-responsive elements (EREs) on target genes. A transcriptional control of genes by ERα is mediated by either DBD-dependent (classical) or DBD-independent (non-classical) pathway. Although molecular mechanisms of ERα in cancer have been characterized extensively, studies investigating importance of each pathway for carcinogenesis are scarce. In this study, we employ knock-in mice expressing an ERα DBD mutant (E207A/G208A) that is defective specifically for ERE binding. We demonstrate that the ERα DBD mutant fails to support estrogen-induced epithelial cell proliferation and carcinogenesis in the cervix of K14E7 transgenic mice. We also demonstrate that cervical diseases are absent in K14E7 mice when one ERα DBD mutant allele and one wild-type allele are present. We conclude that the ERα classical pathway is required for cervical carcinogenesis in a mouse model.
Authors
Son, J; Park, JW; Lambert, PF; Chung, S-H
MLA Citation
Son, Jieun, et al. “Requirement of estrogen receptor alpha DNA-binding domain for HPV oncogene-induced cervical carcinogenesis in mice.Carcinogenesis, vol. 35, no. 2, Feb. 2014, pp. 489–96. Pubmed, doi:10.1093/carcin/bgt350.
URI
https://scholars.duke.edu/individual/pub1411008
PMID
24148821
Source
pubmed
Published In
Carcinogenesis
Volume
35
Published Date
Start Page
489
End Page
496
DOI
10.1093/carcin/bgt350