Fang-Fang Yin

Overview:

Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics

Positions:

Professor in Radiation Oncology

Radiation Oncology
School of Medicine

Director of the Medical Physics Graduate Program at Duke Kunshan University

DKU Faculty
Duke Kunshan University

Professor of Medical Physics at Duke Kunshan University

DKU Faculty
Duke Kunshan University

Member of the Duke Cancer Institute

Duke Cancer Institute
School of Medicine

Education:

B.S. 1982

Zhejiang University (China)

M.S. 1987

Bowling Green State University

Ph.D. 1992

The University of Chicago

Certificate In Therapeutic Radiologic Physics, Radiation Physics

American Board of Radiology

Grants:

Motion Management Using 4D-MRI for Liver Cancer in Radiation Therapy

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Digital tomosynthesis: a new paradigm for radiation treatment verification

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Principal Investigator
Start Date
End Date

Robotic SPECT for Biological Imaging Onboard Radiation Therapy Machines

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Accurate, High Resolution 3D Dosimetry

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Collaborator
Start Date
End Date

A Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments

Administered By
Radiation Oncology
Awarded By
National Institutes of Health
Role
Co-Principal Investigator
Start Date
End Date

Publications:

An Interpretable Planning Bot for Pancreas Stereotactic Body Radiation Therapy.

PURPOSE: Pancreas stereotactic body radiation therapy (SBRT) treatment planning requires planners to make sequential, time-consuming interactions with the treatment planning system to reach the optimal dose distribution. We sought to develop a reinforcement learning (RL)-based planning bot to systematically address complex tradeoffs and achieve high plan quality consistently and efficiently. METHODS AND MATERIALS: The focus of pancreas SBRT planning is finding a balance between organ-at-risk sparing and planning target volume (PTV) coverage. Planners evaluate dose distributions and make planning adjustments to optimize PTV coverage while adhering to organ-at-risk dose constraints. We formulated such interactions between the planner and treatment planning system into a finite-horizon RL model. First, planning status features were evaluated based on human planners' experience and defined as planning states. Second, planning actions were defined to represent steps that planners would commonly implement to address different planning needs. Finally, we derived a reward system based on an objective function guided by physician-assigned constraints. The planning bot trained itself with 48 plans augmented from 16 previously treated patients, and generated plans for 24 cases in a separate validation set. RESULTS: All 24 bot-generated plans achieved similar PTV coverages compared with clinical plans while satisfying all clinical planning constraints. Moreover, the knowledge learned by the bot could be visualized and interpreted as consistent with human planning knowledge, and the knowledge maps learned in separate training sessions were consistent, indicating reproducibility of the learning process. CONCLUSIONS: We developed a planning bot that generates high-quality treatment plans for pancreas SBRT. We demonstrated that the training phase of the bot is tractable and reproducible, and the knowledge acquired is interpretable. As a result, the RL planning bot can potentially be incorporated into the clinical workflow and reduce planning inefficiencies.
Authors
MLA Citation
Zhang, Jiahan, et al. “An Interpretable Planning Bot for Pancreas Stereotactic Body Radiation Therapy.Int J Radiat Oncol Biol Phys, vol. 109, no. 4, Mar. 2021, pp. 1076–85. Pubmed, doi:10.1016/j.ijrobp.2020.10.019.
URI
https://scholars.duke.edu/individual/pub1464387
PMID
33115686
Source
pubmed
Published In
Int J Radiat Oncol Biol Phys
Volume
109
Published Date
Start Page
1076
End Page
1085
DOI
10.1016/j.ijrobp.2020.10.019

Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast Radiation Therapy.

Purpose: The machine learning-based automated treatment planning (MLAP) tool has been developed and evaluated for breast radiation therapy planning at our institution. We implemented MLAP for patient treatment and assessed our clinical experience for its performance. Methods and Materials: A total of 102 patients of breast or chest wall treatment plans were prospectively evaluated with institutional review board approval. A human planner executed MLAP to create an auto-plan via automation of fluence maps generation. If judged necessary, a planner further fine-tuned the fluence maps to reach a final plan. Planners recorded the time required for auto-planning and manual modification. Target (ie, breast or chest wall and nodes) coverage and dose homogeneity were compared between the auto-plan and final plan. Results: Cases without nodes (n = 71) showed negligible (<1%) differences for target coverage and dose homogeneity between the auto-plan and final plan. Cases with nodes (n = 31) also showed negligible difference for target coverage. However, mean ± standard deviation of volume receiving 105% of the prescribed dose and maximum dose were reduced from 43.0% ± 26.3% to 39.4% ± 23.7% and 119.7% ± 9.5% to 114.4% ± 8.8% from auto-plan to final plan, respectively, all with P ≤ .01 for cases with nodes (n = 31). Mean ± standard deviation time spent for auto-plans and additional fluence modification for final plans were 12.1 ± 9.3 and 13.1 ± 12.9 minutes, respectively, for cases without nodes, and 16.4 ± 9.7 and 26.4 ± 16.4 minutes, respectively, for cases with nodes. Conclusions: The MLAP tool has been successfully implemented for routine clinical practice and has significantly improved planning efficiency. Clinical experience indicates that auto-plans are sufficient for target coverage, but improvement is warranted to reduce high dose volume for cases with nodal irradiation. This study demonstrates the clinical implementation of auto-planning for patient treatment and the significant importance of integrating human experience and feedback to improve MLAP for better clinical translation.
Authors
Yoo, S; Sheng, Y; Blitzblau, R; McDuff, S; Champ, C; Morrison, J; O'Neill, L; Catalano, S; Yin, F-F; Wu, QJ
MLA Citation
Yoo, Sua, et al. “Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast Radiation Therapy.Adv Radiat Oncol, vol. 6, no. 2, Mar. 2021, p. 100656. Pubmed, doi:10.1016/j.adro.2021.100656.
URI
https://scholars.duke.edu/individual/pub1476592
PMID
33748540
Source
pubmed
Published In
Advances in Radiation Oncology
Volume
6
Published Date
Start Page
100656
DOI
10.1016/j.adro.2021.100656

An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).

PURPOSE: To develop an artificial intelligence (AI) agent for fully automated rapid head-and-neck intensity-modulated radiation therapy (IMRT) plan generation without time-consuming dose-volume-based inverse planning. METHODS: This AI agent was trained via implementing a conditional generative adversarial network (cGAN) architecture. The generator, PyraNet, is a novel deep learning network that implements 28 classic ResNet blocks in pyramid-like concatenations. The discriminator is a customized four-layer DenseNet. The AI agent first generates multiple customized two-dimensional projections at nine template beam angles from a patient's three-dimensional computed tomography (CT) volume and structures. These projections are then stacked as four-dimensional inputs of PyraNet, from which nine radiation fluence maps of the corresponding template beam angles are generated simultaneously. Finally, the predicted fluence maps are automatically postprocessed by Gaussian deconvolution operations and imported into a commercial treatment planning system (TPS) for plan integrity check and visualization. The AI agent was built and tested upon 231 oropharyngeal IMRT plans from a TPS plan library. 200/16/15 plans were assigned for training/validation/testing, respectively. Only the primary plans in the sequential boost regime were studied. All plans were normalized to 44 Gy prescription (2 Gy/fx). A customized Harr wavelet loss was adopted for fluence map comparison during the training of the PyraNet. For test cases, isodose distributions in AI plans and TPS plans were qualitatively evaluated for overall dose distributions. Key dosimetric metrics were compared by Wilcoxon signed-rank tests with a significance level of 0.05. RESULTS: All 15 AI plans were successfully generated. Isodose gradients outside of PTV in AI plans were comparable to those of the TPS plans. After PTV coverage normalization, Dmean of left parotid (DAI  = 23.1 ± 2.4 Gy; DTPS  = 23.1 ± 2.0 Gy), right parotid (DAI  = 23.8 ± 3.0 Gy; DTPS  = 23.9 ± 2.3 Gy), and oral cavity (DAI  = 24.7 ± 6.0 Gy; DTPS  = 23.9 ± 4.3 Gy) in the AI plans and the TPS plans were comparable without statistical significance. AI plans achieved comparable results for maximum dose at 0.01cc of brainstem (DAI  = 15.0 ± 2.1 Gy; DTPS  = 15.5 ± 2.7 Gy) and cord + 5mm (DAI  = 27.5 ± 2.3 Gy; DTPS  = 25.8 ± 1.9 Gy) without clinically relevant differences, but body Dmax results (DAI  = 121.1 ± 3.9 Gy; DTPS  = 109.0 ± 0.9 Gy) were higher than the TPS plan results. The AI agent needed ~3 s for predicting fluence maps of an IMRT plan. CONCLUSIONS: With rapid and fully automated execution, the developed AI agent can generate complex head-and-neck IMRT plans with acceptable dosimetry quality. This approach holds great potential for clinical applications in preplanning decision-making and real-time planning.
Authors
Li, X; Wang, C; Sheng, Y; Zhang, J; Wang, W; Yin, F-F; Wu, Q; Wu, QJ; Ge, Y
URI
https://scholars.duke.edu/individual/pub1474690
PMID
33577108
Source
pubmed
Published In
Med Phys
Published Date
DOI
10.1002/mp.14770

NRG Oncology Survey on Practice and Technology Use in SRT and SBRT Delivery.

Purpose: To assess stereotactic radiotherapy (SRT)/stereotactic body radiotherapy (SBRT) practices by polling clinics participating in multi-institutional clinical trials. Methods: The NRG Oncology Medical Physics Subcommittee distributed a survey consisting of 23 questions, which covered general technologies, policies, and procedures used in the Radiation Oncology field for the delivery of SRT/SBRT (9 questions), and site-specific questions for brain SRT, lung SBRT, and prostate SBRT (14 questions). Surveys were distributed to 1,996 radiotherapy institutions included on the membership rosters of the five National Clinical Trials Network (NCTN) groups. Patient setup, motion management, target localization, prescriptions, and treatment delivery technique data were reported back by 568 institutions (28%). Results: 97.5% of respondents treat lung SBRT patients, 77.0% perform brain SRT, and 29.1% deliver prostate SBRT. 48.8% of clinics require a physicist present for every fraction of SBRT, 18.5% require a physicist present for the initial SBRT fraction only, and 14.9% require a physicist present for the entire first fraction, including set-up approval for all subsequent fractions. 55.3% require physician approval for all fractions, and 86.7% do not reposition without x-ray imaging. For brain SRT, most institutions (83.9%) use a planning target volume (PTV) margin of 2 mm or less. Lung SBRT PTV margins of 3 mm or more are used in 80.6% of clinics. Volumetric modulated arc therapy (VMAT) is the dominant delivery method in 62.8% of SRT treatments, 70.9% of lung SBRT, and 68.3% of prostate SBRT. Conclusion: This report characterizes SRT/SBRT practices in radiotherapy clinics participating in clinical trials. Data made available here allows the radiotherapy community to compare their practice with that of other clinics, determine what is achievable, and assess areas for improvement.
Authors
Chetvertkov, M; Monroe, JI; Boparai, J; Solberg, TD; Pafundi, DH; Ruo, RL; Gladstone, DJ; Yin, F-F; Chetty, IJ; Benedict, S; Followill, DS; Xiao, Y; Sohn, JW
MLA Citation
Chetvertkov, Mikhail, et al. “NRG Oncology Survey on Practice and Technology Use in SRT and SBRT Delivery.Front Oncol, vol. 10, 2020, p. 602607. Pubmed, doi:10.3389/fonc.2020.602607.
URI
https://scholars.duke.edu/individual/pub1469377
PMID
33330102
Source
pubmed
Published In
Frontiers in Oncology
Volume
10
Published Date
Start Page
602607
DOI
10.3389/fonc.2020.602607

4D radiomics: impact of 4D-CBCT image quality on radiomic analysis.

PURPOSE: To investigate the impact of 4D-CBCT image quality on radiomic analysis and the efficacy of using deep learning based image enhancement to improve the accuracy of radiomic features of 4D-CBCT. MATERIAL AND METHODS: In this study, 4D-CT data from 16 lung cancer patients were obtained. Digitally reconstructed radiographs (DRRs) were simulated from the 4D-CT, and then used to reconstruct 4D CBCT using the conventional FDK (Feldkamp et al 1984 J. Opt. Soc. Am. A 1 612-9) algorithm. Different projection numbers (i.e. 72, 120, 144, 180) and projection angle distributions (i.e. evenly distributed and unevenly distributed using angles from real 4D-CBCT scans) were simulated to generate the corresponding 4D-CBCT. A deep learning model (TecoGAN) was trained on 10 patients and validated on 3 patients to enhance the 4D-CBCT image quality to match with the corresponding ground-truth 4D-CT. The remaining 3 patients with different tumor sizes were used for testing. The radiomic features in 6 different categories, including histogram, GLCM, GLRLM, GLSZM, NGTDM, and wavelet, were extracted from the gross tumor volumes of each phase of original 4D-CBCT, enhanced 4D-CBCT, and 4D-CT. The radiomic features in 4D-CT were used as the ground-truth to evaluate the errors of the radiomic features in the original 4D-CBCT and enhanced 4D-CBCT. Errors in the original 4D-CBCT demonstrated the impact of image quality on radiomic features. Comparison between errors in the original 4D-CBCT and enhanced 4D-CBCT demonstrated the efficacy of using deep learning to improve the radiomic feature accuracy. RESULTS: 4D-CBCT image quality can substantially affect the accuracy of the radiomic features, and the degree of impact is feature-dependent. The deep learning model was able to enhance the anatomical details and edge information in the 4D-CBCT as well as removing other image artifacts. This enhancement of image quality resulted in reduced errors for most radiomic features. The average reduction of radiomics errors for 3 patients are 20.0%, 31.4%, 36.7%, 50.0%, 33.6% and 11.3% for histogram, GLCM, GLRLM, GLSZM, NGTDM and Wavelet features. And the error reduction was more significant for patients with larger tumors. The findings were consistent across different respiratory phases, projection numbers, and angle distributions. CONCLUSIONS: The study demonstrated that 4D-CBCT image quality has a significant impact on the radiomic analysis. The deep learning-based augmentation technique proved to be an effective approach to enhance 4D-CBCT image quality to improve the accuracy of radiomic analysis.
Authors
Zhang, Z; Huang, M; Jiang, Z; Chang, Y; Torok, J; Yin, F-F; Ren, L
MLA Citation
Zhang, Zeyu, et al. “4D radiomics: impact of 4D-CBCT image quality on radiomic analysis.Phys Med Biol, vol. 66, no. 4, Feb. 2021, p. 045023. Pubmed, doi:10.1088/1361-6560/abd668.
URI
https://scholars.duke.edu/individual/pub1470006
PMID
33361574
Source
pubmed
Published In
Phys Med Biol
Volume
66
Published Date
Start Page
045023
DOI
10.1088/1361-6560/abd668

Research Areas:

Bioinformatics
Medical physics